If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-7x-5=0
a = 11; b = -7; c = -5;
Δ = b2-4ac
Δ = -72-4·11·(-5)
Δ = 269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{269}}{2*11}=\frac{7-\sqrt{269}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{269}}{2*11}=\frac{7+\sqrt{269}}{22} $
| x-7=3-7x+42 | | 10x+17=-9-3x | | 7n^2=-3n | | 7a^2=-32a-16 | | 12/7x+3x=-24+3/7 | | Y=22+2x | | 17x+4=38 | | n+3n-3n=9 | | 12(x-9)=144 | | 2x/3+2=3 | | 7u+14=-2u+23 | | 5/6(7x+11)=15 | | 8/x=10/13 | | 10+x/2=32 | | 9s-6s=15 | | E^x=0 | | -9x/33=-3 | | 2y+y=-6+4 | | 4x+21=7x-21 | | 2x+44=x+44 | | 12g-11g=10 | | 12(x−50)=19+6x | | 1/2(x−50)=19+6x | | 1g-11g=10 | | 9+9=5(4x-2) | | 168=6+3x | | 13-2y÷2=2y÷3 | | -3|d-5|=-6 | | 7−6/5x=9 | | 3s+2s=15 | | 7−6.5x=9 | | 992y-50-8y=12y-5 |